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Abstract
The detection of jumps in a frequency record is a challenging problem by either visual or
mathematical means. The former takes considerable experience and judgment, and is therefore
quite subjective, but has the advantage of providing insight into device behaviour. The latter is
more impartial and consistent, and can be automated. In combination, mathematical jump
detection can be applied for automatic clock testing and monitoring. If a jump is detected, the
record can then be inspected visually before deciding on the action required. This paper
describes frequency jump detection algorithms that are included in a program for frequency
stability analysis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is a large body of technical literature on the subject
of detecting discontinuities in time series (often referred to
as regime shift or change-point analysis) [1–3]. Many such
algorithms involve comparing the mean values of two adjacent
windows that are moved through the data, while others use
cumulative sum charts and other similar techniques. Some
of these methods require a data model whose parameters
must be determined, while other methods are non-parametric.
They can variously detect outliers, transients, level shifts
and changes in variance for data having different noise
characteristics and trends [4]. The emphasis here is on
detecting jumps in reasonably white frequency residuals after
outliers and deterministic drift have been removed from the
data. Robust and effective means exist for outlier removal
based on the median absolute deviation (MAD), several models
exist for fitting and removing frequency drift and the dynamic
Allan deviation (DAVAR) can be used to examine clock data
for stability changes [5]. This paper describes several simple
and intuitive techniques for detecting, analysing and displaying
frequency jumps.

2. Frequency jump detection algorithms

This paper describes two methods for frequency jump
detection, using either block averaging (BLKAVG) or
sequential averaging (SEQAVG) of the frequency data. It also

covers the classic cumulative sum (CUMSUM) method for
analysing data for changes in mean [2].

The BLKAVG algorithm is very intuitive. It simply
compares the average values within two non-overlapping
moving analysis windows, declaring a jump if their difference
exceeds a certain limit that remains the same throughout the
data set. This detection method has been used by the author for
many years to automatically screen clock data for frequency
jumps.

The SEQAVG algorithm is based on the Rodionov
Sequential t-Test Analysis of Regime Shifts (STARS)
algorithm [6]. It does not use fixed analysis windows, but rather
scans the data sequentially. If a suspect point is found that
exceeds the jump threshold, the next block of data is examined
to confirm or reject the jump. Instead of using a jump threshold
based on the Student’s t-test [7], the SEQAVG method uses a
fractional frequency jump limit.

The CUMSUM method is well explained by Taylor in
[2]. It is effective for locating and quantifying single jumps
in otherwise well-behaved frequency data. Interestingly, it
is identical to the corresponding normalized (mean-removed)
phase data, where a sharp slope change denotes a frequency
jump.

2.1. Block average algorithm

The Block Average (BLKAVG) frequency jump detection
algorithm compares the difference between the average values
within a pair of adjacent windows of adjustable length against

0026-1394/08/060154+08$30.00 © 2008 BIPM and IOP Publishing Ltd Printed in the UK S154

http://dx.doi.org/10.1088/0026-1394/45/6/S21
mailto: bill@wriley.com
http://stacks.iop.org/Met/45/S154


Algorithms for frequency jump detection

Set lgth

Calc lim

Start

Loop thru all data Done

Calc next pair of avgs

Calc diff between avgs

Limit
Exceeded?

Yes No

Record jump

Jump

All Data
Tested

Jump Limit: | ∆avg | > lim

Default lgth = npts / 10
where npts = # data points

AF = Averaging Factor

Group size = lgthlim = Jump threshold limit
It can be set manually

on basis of either
absolute fractional freq

or sigma factor
where σy = ADEV

Default lim = 3.0·σy at AF=npts / lgth

Figure 1. Block average jump detection flowchart.

a selectable jump threshold. That threshold can be either an
absolute fractional frequency limit or a sigma factor based on
the Allan deviation at an averaging factor equal to the window
length over the entire data set. The start of the data windows
can be offset up to the amount that the data that exceeds the
total span of the data windows. The BLKAVG jump detection
algorithm is shown in the flowchart of figure 1.

The visual presentation of a BLKAVG frequency jump
analysis can be enhanced by plotting the average value of
each analysis window along with the underlying frequency
data.

2.2. Sequential average algorithm

The Sequential Average (SEQAVG) method is similar, but,
instead of dividing the frequency record into fixed blocks, it
searches the data sequentially. If a potential jump is detected,
the following points are examined in an averaging window
to accept or reject the jump. The SEQAVG plot shows the
actual frequency averages in each jump regime, and is able to
locate the jump more closely, but does not show trends in the
data. The SEQAVG jump detection algorithm is shown in the
flowchart of figure 2.

The visual presentation of a SEQAVG frequency jump
analysis can also be enhanced by plotting the average value of
each jump regime along with the underlying frequency data.

A comparison between the BLKAVG and SEQAVG
methods is shown in table 1.

2.3. Cumulative sum jump detection

The Cumulative Sum (CUSUM) is a classic change-point
analysis technique that uses the cumulative sum of the
differences between the current value and the overall

average [2]. Starting with S0 = 0,

Si = Si−1 + (yi − ȳ) (1)

where Si is the cumulative sum and ȳ is the average of the data.
The CUSUM slope indicates the value of the data with

respect to the overall average. A flat cumulative sum indicates
that the data is near the average value, a straight cumulative
sum indicates a period of constant data values, and, most
importantly, a sudden change in the CUSUM slope indicates
a jump in the data. The CUSUM plot for a data set having a
single jump will have a V or inverted V shape. The value of
the jump can be determined by the sum of the two slopes of
the CUSUM curve. For N data points having a maximum or
minimum cumulative sum value M at point P , the frequency
jump is equal to

M

P − 1
+

M

N − P
. (2)

2.4. STARS algorithm

Recent progress in detecting ‘regime shifts’ in ecological
records has resulted in a jump detection algorithm called the
Sequential t-Test Analysis of Regime Shifts (STARS), which
could be useful for analysing clock frequency records [6]. The
STARS algorithm uses the Student’s t-test [7] to compare
the mean values of two analysis windows that are moved
sequentially through the data record, searching for differences
that are associated with a significant jump. The problem with
the STARS method is that it is too sensitive. Frequency
stability mainly involves the analysis of noise. The t-test
indicates whether, at a certain confidence level, there has been
a shift in the mean, generally for small sample sizes. For the
analysis of noise, this detects too many changes. The better
criterion for noise is either an absolute frequency deviation,
or a jump that exceeds the Allan deviation by a certain
factor.
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Figure 2. Sequential average (SEQAVG) jump detection algorithm flowchart.

Table 1. Comparison between BLKAVG and SEQAVG frequency jump detection methods.

Method Advantages Disadvantages

Block Average 1. Simple, intuitive, easy to 1. Does not get exact jump location.
(BLKAVG) understand, obvious from plot. 2. Does not get actual frequency averages.

2. Shows non-jump changes. 3. May not get accurate jump size.
3. Handles drift better, shows it as

block averages, not jumps.

Sequential Average 1. Get right jump location. 1. More complex algorithm.
(SEQAVG) 2. Get actual frequency averages 2. Does not show non-jump changes.

within jump regimes. 3. Depends on average at beginning
3. Cleaner plot. of each regime.
4. Better jump size estimates. 4. Shows drift as staircase of jumps.
5. No offset parameter needed. 5. Slower (but not significantly).
6. Window length less critical

(if not too long).

3. Frequency jump detection examples

Examples of the BLKAVG, SEQAVG and CUSUM frequency
jump detection methods are shown below for a set of 1024
points of simulated frequency data having white FM noise
at a level of 1 × 10−12 at a 1 s sampling time plus a step of
−1 × 10−12 at the centre of the record. The objective is to
correctly detect this frequency jump in the presence of an equal
amount of noise, and quantify both the location of the jump

and its value, preferably using default detection parameters
(an analysis window size based on the record length and a
frequency jump threshold equal to a multiple of the Allan
deviation).

3.1. BLKAVG jump detection

This example of the BLKAVG frequency jump detection
algorithm is shown in figure 3. The light horizontal lines on
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Figure 3. BLKAVG plot and results.

the plot are the average values of the frequency data over the
analysis windows, and a detected frequency jump is shown by
a heavy vertical line.

The default window length is one-tenth of the record
length or five, whichever is larger. The default window offset is
zero, and it can have a maximum value equal to the number of
frequency data points modulo the window length. The default
jump threshold is three times the value of the Allan deviation
of the entire data set at an averaging factor equal to the window
length. The jump detection behaviour can be optimized for the
particular application by adjusting the detection parameters.

3.2. SEQAVG jump detection

An example of the SEQAVG frequency jump detection
algorithm for the same data set is shown in figure 4. Here
the light horizontal lines on the plot are the average values
of the frequency data over the entire jump regimes, and the
detected frequency jump is again shown by the heavy vertical
line near the centre of the plot.

The default window length and jump threshold are the
same as for the BLKAVG method, and can also be tuned for the
particular application. The window offset parameter does not

apply to the SEQAVG method. One jump is correctly detected
for window lengths between 28 and 220 for these data.

3.3. SEQAVG jump location

The SEQAVG frequency jump detection algorithm tends to
estimate the jump location earlier than it actually is because it
reports it at the beginning of the averaging window in which the
jump is confirmed. That bias can be reduced significantly by
averaging the jump location estimates for the normal forward
and reversed data sets. That improved jump location estimate
is given by

J = F + (N − R)

2
(3)

where J is the estimated jump location, F is the forward jump
location, R is the reverse jump location and N is the number
of data points.

For example, the forward and reverse default SEQAVG
jump detection results for the same 1024-point set of simulated
frequency data are 482 and 478, respectively. The combined
jump location estimate J = (482 + 1024 − 478)/2 = 514 is
very close to that expected, 512, much closer than either the
forward or reverse estimates alone.

Metrologia, 45 (2008) S154–S161 S157



W J Riley

Figure 4. SEQAVG plot and results.

3.4. SEQAVG jump magnitude

The jump magnitudes are similar in each direction (differing
only by about 3.5%), and have an average value of 9.18×10−13,
reasonably close to the nominal value of 1 × 10−12 and
the actual difference between the two halves of the data,
9.77×10−13. Reducing the window size to 50 yields an average
jump magnitude of 9.54 × 10−13, 2.4% below the actual.

3.5. Summary of BLKAVG and SEQAVG results

The previous examples of frequency jump detection methods
showed the analysis an abrupt frequency change of 1 × 10−12

at the centre of a 1024-point frequency record of simulated
white FM noise having an Allan deviation of 1 × 10−12 at
the 1 s sampling interval. The jump was correctly identified
using the default BLKAVG detection parameters as having a
magnitude of 1.05 × 10−12 at point 509. The calculated 1 s
overlapping Allan deviation of the entire frequency record,
0.992×10−12, is not significantly affected by the jump, which
causes the stability plot to flatten and then go upward at
longer averaging times. Varying the window offset over its
allowable range of 0 to 24 had little effect on the magnitude
of the detected frequency jump, which varied from 0.993 to
1.116×10−12. The frequency jump is visually apparent in the

data plot, especially if they are averaged by a factor of about
ten, and the detection algorithms are able to quantify the jump
automatically at least as well as can be done manually.

3.6. CUMSUM plot

The BLKAVG and SEQAVG frequency jump detection
methods can also make use of cumulative sum (CUSUM)
calculations to help identify and estimate the location and value
of frequency jumps, as shown in figure 5.

Inspection of the CUSUM plot provides a good indication
of the confidence in the jump determination and can show
the presence of other smaller, below-threshold jumps. For
a single dominant jump, it does an excellent job of locating
and quantifying the jump. For frequency data, the CUSUM
is the same as its corresponding phase data after frequency
normalization.

4. Confidence factor

A nice aspect of the CUSUM method is its ability to provide
an estimate of the confidence factor for a detected jump. This
can be accomplished by randomly reordering the frequency
data and calculating the CUSUM for many such cases,
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Figure 5. CUSUM plot.

thereby establishing a basis of comparison for the actual jump
estimation. For example, if in 995 out of 1000 such cases,
the CUSUM range is less than that for the actual data, the
confidence in the jump is 99.5%. In most cases for data set
sizes and thresholds appropriate for clock frequency data, the
confidence level is above 99.9% when a jump is detected.

5. Jump detection criteria

Important considerations are the ability to reliably detect jumps
of a specified magnitude with minimal false alarms in the
presence of common clock noises and slow frequency trends.
Frequency jumps can be the most significant limitation to clock
performance in many applications. While there is no substitute
for human judgment in assessing clock behaviour, automated
jump detection can be a valuable supplement to that, especially
in a large-scale production situation (e.g. commercial telecom
clocks), or for critical applications (e.g. GPS or Galileo satellite
clocks).

6. Jump display and reporting

Frequency jump detection is naturally associated with a
frequency data plot as shown in the preceding examples.
The frequency averages are shown as green horizontal lines
extending over the analysis data windows. Those average
values are connected by vertical steps that, in the case of a
detected frequency jump, are shown as heavy green lines. The
jump detection parameters are shown as an annotation at the
bottom of the plot, the largest jump magnitude and location
(if any) is shown as an optional message, and a CUSUM plot
inset may also be displayed. Complete information about
the jump detection parameters and results is written to the
Windows clipboard, and can be pasted into a plot note or

another application. The frequency averages and cumulative
sums corresponding to each data point are automatically
written to data files. The colour of the frequency data in the
BLKAVG and SEQAVG plots can be changed to a faint yellow
so that the jump analysis can be better seen.

7. Jump detection limitations

The most significant limitation of the BLKAVG frequency
jump detection algorithm is that it uses analysis windows of a
fixed (although selectable) size. That means that jumps can
be detected only at certain places in the frequency record,
and, accordingly, the magnitude of the detected jumps are
not necessarily those of the underlying data but simply the
change in the average value at the boundary of the two analysis
windows. This limitation can be reduced by changing the size
of the analysis window and/or their offset. The window size
is a tradeoff between better time resolution (short) and better
noise averaging (long). In contrast, the SEQAVG and CUSUM
methods can detect a jump at any point in the data record. The
SEQAVG jump location can be improved by analysing the
data in both directions. All of these jump detection methods
are sensitive to drift and divergent noise.

8. Prewhitening

It can be hard to tell the difference between divergent noise
and an actual jump. For example, random walk FM noise with
no jump resembles white FM noise having an actual jump in
mean value. Jump detection can sometimes be improved by
removing not only outliers and deterministic drift, but also by
removing flicker (‘pink’) and random walk (‘red’) noise from
the data [8]. That prewhitening process can help to distinguish
between true jumps and the lurching behaviour caused by
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Figure 6. SEQAVG frequency jump detection with simulated white and flicker FM noise.

divergent noise. Such noise removal, although inexact, can
be accomplished by determining the lag 1 autocorrelation
coefficient, ρ1, of the data and using that to remove an AR(1)
autoregressive noise component [9, 10]:

y(t) = y(t + 1) − ρ1 · y(t). (4)

A ρ1 value of 0 corresponds to white noise, while increasingly
positive ρ1 values result from pink and red noise spectra, with
a value of 1 associated with random walk noise. Examples of
AR(1) noise processes and their autocorrelations and spectra
are shown in [10]. The lurches of the more divergent noise
processes can often resemble jumps.

Consider, for example, a sample of random walk
noise having a ρ1 = 0.989 and a power law exponent
α = −1.90 at an averaging factor of 1. If that noise data is
prewhitened as described above, the resulting residuals are
white (ρ1 = −0.041, α = +0.09) and are without any apparent
jump.

A determination of ρ1 can itself be affected by a
jump, and techniques have been described for sectioning
the data and correcting for bias [8]. The prewhitening
operation will reduce the size of the jump, but the process
is nevertheless reasonably effective in distinguishing between
divergent noise and an actual jump, whose location is
preserved.

9. Additional examples

Another example of SEQAVG frequency jump detection is
shown in figure 6, again using the default detection parameters
plus a CUSUM plot inset. This is a 30-day set of 2880 points of
τ = 900 s (15 min) simulated clock data having 2×10−12τ−1/2

white FM noise and flicker FM noise at a level of 2 × 10−14

plus a jump of +1 × 10−13 at the centre (point 1440).

The jump is detected, located and quantified with
reasonable accuracy. The CUSUM analysis characterizes the
jump as having a value of +1.06 × 10−13 at point 1435. The
positive frequency ‘lurch’ near point 500 is not a jump but
rather a result of the divergent flicker FM noise. It is visible
in both the frequency and CUSUM plots, and its average
frequency change is about half the threshold level. The same
simulated noise without the frequency jump has a CUSUM
range of 232, about one-third the jump size and no jumps are
found with the same detection parameters. A typical set of
1000 random CUSUMs has a range of 118, a mean of 82 and a
standard deviation of 19.3, so the actual CUSUM range of 767
is many standards deviations larger, implying a high confidence
in the jump detection.

Other analysis methods such as Allan deviation and
autocorrelation function plots can also provide insight into the
presence and effect of a frequency jump. An upward slope
of a drift-removed Allan deviation plot at long τ indicates a
significant frequency disturbance of some sort since flicker
FM noise would have a flat characteristic. Although usually
associated with random walk FM noise, a τ 1/2 slope can also
be caused by a step in average frequency. Similarly, a long
positive autocorrelation tail at large lags is a sign of either
divergent noise or some sort of long-term frequency change.
However, neither of these plots can be uniquely or simply
related to a frequency jump.

Prewhitening by removing an AR(1) autoregression
process from a mixture of flicker and random walk FM noise
results in much whiter frequency data. Even though any
frequency jump in the data would be reduced in magnitude by
the prewhitening, simulations have shown that a jump can still
be detected at the right location with a BLKAVG or SEQAVG
analysis using a 3-sigma threshold. This indicates that it is
actually a jump and not simply the result of the underlying
divergent noise.
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Figure 7. BLKAVG frequency jump detection for RFS stabilization record.

These frequency jump detection and analysis methods
have also been applied to actual clock data, including the
42-day, τ = 900 s early stabilization frequency residual record
of a rubidium frequency standard after removal of a log fit
shown in figure 7.

This record shows two frequency jumps, the first during
the early rapid stabilization and a second more prominent
jump at about point 1600. The relatively long analysis
window size (399) delays detection of the large jump and the
default detection threshold ignores the first smaller jump. The
CUSUM inset shows only one sharp change because the first
jump is actually more like a transient, and the multiple peaks
distort its jump magnitude determination. If the window size is
changed to 100, the analysis still detects a single jump, whose
location is then determined more exactly while still providing
adequate noise averaging. Reducing the jump threshold to
5 × 10−14 produces three detected jumps (including the first
one) but splits the second jump into two parts. Clearly, user
judgment is needed when performing a jump analysis on a
complex record.

In another similar example, the frequency residuals show
a single large lurch and several smaller jumps. The default
3-sigma BLKAVG jump analysis works well for this slower
frequency discontinuity. The CUSUM plot has its sharpest and
largest peak at the large lurch, but is too complex to provide
a meaningful jump estimate. Multiple smaller jumps can be
detected by reducing the window size and threshold.

10. Conclusions

This paper has described several methods for the detection and
analysis of frequency jumps in clock data. The BLKAVG
and SEQAVG algorithms, along with a CUSUM plot, are
reasonably consistent and effective ways to examine such

jumps. Those methods have been successfully implemented
into a program for frequency stability analysis [11].
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