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ABSTRACT 

The paper outlines the theoretical basis behind the defini- 
tion of frequency stability in the time domain. Various 
types of variances are examined. Their differences and 
interrelation are pointed out. Systems that are generally 
used in the measurement of these variances are described. 

INTRODUCTION 

Radio frequency sources give an output signal which, in general, 
is affected by small fluctuations in their amplitude, phase or frequency. 
The nature of these fluctuations may be random or deterministic. Due to 
the large number of users of these sources and the variety of fields in 
which they are applied, a problem has arisen in the method of character- 
ization of the frequency fluctuations. In the case of the deterministic 
fluctuations such as linear frequency drift, it has been found, in most 
cases, that a specification of the fractional frequency deviation on a 
per day or per month basis is satisfactory. However, in the case of non 
deterministic or random fluctuations, a mathematical treatment based on 
probability concepts is necessary. In the past, depending on the field 
of interest, several methods of characterization have been used andsome- 
times have led to confusion. 

More recently a proposal has been made by the IEEE Subcommittee 
on Frequency Stability that the spectral density S (f) of the fractional 
frequency fluctuation, y, and the two sample varia ce, a,(r), be used to x 
characterize frequent 
in the time domain [l T 

stability respectively in the frequency domain and 
. These two parameters have resulted as a logical 

conclusion from a rather large amount of theoretical and experimental 
work on the subject [2],[3]. However, other parameters, specially inthe 
time domain, have been studied and have been found most interesting in 
specific cases [4],[5],[6],[7]. The subject still raises great interest. 
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In the present paper we give a brief description of the main theo- 
retical concepts involved in the definition of the frequency stability in 
the time domain. The interrelation through the spectral density S (f) 
of some of the various variances that have been studied up to now & made 
explicit. Finally several systems used for the measurement of stability 
in the time domain are described. 

This paper was prepared at the request of the Program Committee of 
this Meeting. Several excellent reviews and tutorial papers on this sub- 
ject have been published in recent years [8],[9],[10],[11],[12]. Conse- 
quently it appears difficult in the writing of such a tutorial introduc- 
tion, to avoid repetitions or to improve on all these papers. The most 
one can do at this stage, is to present the material in a slightly diffe- 
rent manner. In particular the present text, specially on the theoreti- 
cal section, owes-a great deal to 
the reader is strongly encouraged 

the recent review by Dr. Rutman [8]; 
to consult that excellent article. 

A- THEORY 

Definitions 

According to a well accepted notation, the instantaneous output 
voltage of a signal generator can be written as [l]: 

V(t) = [Vo+e(t)] sin [2nvgt+qt)] , (1) 

where Vg and vg are the nominal amplitude and frequency and c(t) and 
‘e(t) are amplitude and phase fluctuations. It is assumed that c(t) is 
very small with respect to Vg and can be entirely neglected. The ins- 
tantaneous frequency of the oscillator is defined as: 

v(t) = v'o (1+ti) , 2lTvg 
. 

where '+?(t) stands for dtit) /dt . We also define the fractional fre- 
quency fluctuation as: 

p-5 : -_-- y(t) E a9 
f, 27rvg ' 

and we assume that 

(2) 

(3) 

(4) 

A proposed means to characterize the frequency stability of an 
oscillator is the spectral density of y denoted by Sy(f) . Its dimen- 
sions are Hz-' . A measurement giving an estimate of S (f) would then 
characterize the stability of the oscillator in the fre&ency domain. 
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This can be done in practice with a spectrum analyzer. However, onemust 
be aware that only estimates of S (f) can be obtained because of fre- 
quency range limitations and fini e observation times. *I? 

Experimental studies of various frequency sources have shown that 
for all practical purposes, the frequency fluctuations spectrum of the 
most common oscillators can be represented by a truncated polynomial in 
the Fourier frequency domain: 

Sy(f) = hcfo , 

where CL is an integer, ranging from -2 to +2. The frequency fluctua- 
tions spectral density can be related to the phase fluctuations spectral 
density through the relation 

either 

Sy(f) f2 
= q syw l 

The a has been associated with various types of fluctuations 
in the phase or frequency representation. 

a Type of fluctuations 

2 White Phase 
1 Flicker of Phase 
0 White Frequency 

-1 Flicker of Frequency 
-2 Random Walk of Frequency 

However, another characterization of the frequency stability can be made 
by considering that y(t) is a random function of time. Then, a statis- 
tical parameter measuring in some sense the excursions of the values y 
of the random function y(t) around its mean value should characterize 
the frequency stability of the oscillator. 
deviation o or the variance u2 

In statistics, the standard 
is often used as statistical parameter. 

We could define a variance for the instantaneous frequency. In practice 
the frequency is measured over a time interval ,+, called the averaging 
time and the variance is calculated through the .relation: 

2 
02(T> = < ((y - CT>) ’ , 

where < > means an average over an infinite number of samples. Without 
going too deeply into questions of statistical concern, we make a few 
assumptions. First, we assume that stationnarity applies to our model. 
By this we mean that a displacement of the time coordinates does not 
change the statistics of our ensemble. Secondly we assume ergodi- 
city, that is, averages over the ensemble can be replaced by time aver- 
ages on one of the samples. The sign < > in equation (7) then becomes 
a time average. Furthermore, we can assume that <y> = 0 and a2(r) 
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becomes simply < (y,)'> . Since < (y>2 > implies an infinite time aver- 
age this variance is an ideal theoretical concept which is commonly cal- 
led the true variance 12(r) . In practice it is clear that one can only 
do measurements either for a finite time or on a finite number of samples 
and thus obtain an estimate of this ideal statistical parameter. Further- 
more it is found that 12(r) diverges for certain types of noise such as 
flicker frequency fluctuations. In order to avoid these problems, various 
scientists have proposed several types of variances obtained from limited 
amount of samples. As will be explained below, one of them, the "two - 
adjacent -, sample variance" studied by Barnes and Allan, has been propo- 
sed as a time domain measurement of frequency stability [l]. 

An attempt at measuring time domain frequency stability 

Before defining the two sample variance let us examine the process 
of frequency measurement itself. We assume that a digital frequency 
counter is used to measure the frequency. The measurement is then made 
over a finite time z and one obtains an average of the frequency over 
this time interval 'I. In other words, the counter gives the number of 
cycles nk during the time interval r . Figure 1 is an experimental 
arrangement by which the frequency of oscillator (1) is measured, oscill- 

. ator (2) being used as the time base of the counter. For the purpose of 
simplifying the picture let us assume that oscillator (2) is perfect in 
the sense that its frequency is free of fluctuations. All fluctuations 
in the measurements would then come from frequency fluctuations of os- 
cillator (1). The counter takes measurements in the sequence shown in 
figure 2(a). The result for N measurements may be as shown in figure 
2(b). Here T = tk+l-tk and 

(8) 

(9) 

The average value of the random variable u is only an estimate of the 
actual average frequency, average being done on N samples. One may then 
calculate for the N samples the variance: 

a2 
u 

=& ; (Tj4TQ2 . 
j=l 

(10) 

In order to continue the analysis it is assumed that the oscilla- 
tor does not show systematic drifts with time. If such drifts are pre- 
sent, they are removed from the data and the following analysis applies. 

The variance of the random variable 7 may be readily written as: 
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uy2 ( N, T , -c 1 (11) 

1. First we note that oy2 (N, T, r ) is itself a random variable. 
It is an estimate of the true variance 12(r) made on N samples. Its 
average value made on several sets on N samples, ay2 (N, T, r) , should 
be close to the true variance. At the limit where N tends to infinity 
it should be equal to 12(r) . 

2. The results of the experiments discussed above can be used to 
form an histogram as illustrated in figure 3. If the number N of sam- 
ples is large enough the figure may be rather smooth and a good estimate 
of oy2 (N,T,.r) can be obtained from this curve through a measurement 
of the half width at half the height. 
CT = 1.17 (AT)+ ). 

( For a normal distribution 

3. If the experiment is repeated for other averaging times T , 
the results obtained with the histoe technique may behave as shown in 
figure 4. The value of Jay2 (N, T, -c) for each of the histograms may 
then be plotted as a function of r . The results are shown in figure 5. 
These results appear very interesting, and give in a sense an indication 
of the frequency stability of the oscillator in the time domain. However, 
several difficulties arise when the technique of measurements is changed. 
For example it is observed that in the region where the variance varies 
as l/r2 an increase in the number of samples N does not alter its value, 
providing this number of samples is large enough. This is not the case 
in the region where oy2 (N, T, T) is independent of T . In that region 
an increase in the number of samples N shows up by an increase of the 
variance. One is then faced with a problem of a variance whose values 
depend on the number of samples. 
varies as l/r2 the value of o2 

Furthermore, in the region where cr2 
depends on the frequency bandwidth of 

the measurement system. 

The two-sample variance 

In order to avoid these problems, and to facilitate intercompari- 
son between the results reported by workers in various fields, one has 
then to make a choice on N and preferabl 

Yi 
the ratio T/r. It has been 

proposed, following the work of Allan [13 : 

1) that the following weighed sample variance be used: 

a(N, T, ~1 (12) 

2) that N=2 + two-sample variance ; 

3) that _T=l, or no dead time between measurements [l]. This 
varia&e is a random variable and its average, abreviated 

251 



aY 2(d , is given by: 

oy2w = <ay2 (2,T,r >' -yk)2> . (13) 

It is proposed as a characterization of frequency stability in the time 
domain. 

This variance has very interesting properties: 

1. It is standardized in the sense that N and T are fixed. 

2. It is equal to the true variance 12(~) for white frequency 
noise. It is equal to 3/212(r) for white phase noise thus close to it. 

3. It is convergent for all types of frequency noise normally 
encountered in oscillators, that is the five power laws mentioned earlier. 

4. Although by definition, one is still faced with an average on 
an infinite number of samples (in this sense CJ 2(~) is still an ideal- 
ization), good estimates of it can be obtained%y a relatively limited 
number of measurements,m, of the pairs: 

oy2(r,m) =-m 1 7 +(Tk+l-jTk) 2 l 

j=l j 
(14) 

For n>lO it has been shown that the confidence interval to be 
associated to a,(r) in such an estimate if of the order of 1141. 

Confidence interval = Kooy(+r) /6 , 

where Ko is a constant depending on the power law predominent, but is 
not far from unity. 

5. Finally, tables have been compiled which translates from one 
type of variance to another in relation to variations in N and theratio 
T/r , and this, 
tors [15]. 

for the five power laws commonly encountered in oscilla- 
Of particular interest is the bias function 

T <u 2(2,T,r)> 
B2+ u) = <uyZ(2Jr)> ' 

since in general a simple counter will be characterized by a dead time 
(T/r#l) between successive measurements. 

The main disadvantages of oy2(r) are: 

1) it diverges for power law spectral densities greater than -2; 

2) it does not discriminate between white phase noise and flicker 
of phase noise. 

252 

- ----- 



Relation between the time domain and the frequency domain: other types -- 
of variance 

The time domain frequency stability, as characterized earlier 
either through the true variance or the two-sample variance,. can be inter- 
preted in a different way. The operation of the counter, averaging the 
frequency for a time 'I may be thought of as a filtering operation. The 
transfer function , H(f) , of this equivalent filter is then the Fourier 
transform of the impulse response h(t) . It can be shown that the time 
domain frequency stability is then given by [16],[17]. 

I 

co 

<u~(N,T,T) > = 0 Sy(f) ]H(f) 12df , 

where S (f) is the spectral density of frequency fluctuations. 
case ofythe true variance and of the Allan variance, we have: 

IO t<-T 0 t < --I 

jl 1 
hi(t) = > 7 -T<t<O , i I 

hA(t) = J2c; --T<t<o 
i I 

( 0 t>O I 
-& O<iz<T 

io t>-r 

sin w'c 
HI(f) = 

2 
y 

, 

(15) 

In the 

, (16) 

(17) 

These relations are illustrated in figure 6. 

This "transfer function approach" has been exploited by several 
authors to elaborate new types of variances for characterizing oscillator 
frequency stability in the time domain. It is the equivalent of digital 
filtering used in data processing. 

Hadamard Variance 

The sequence of measurements shown in figure 6 for the Allan 
variance, which consists of two samples (N= 2) can be expanded to a se- 
quence of a greater number of samples. A sequence for the case where 
N=lO is shown in figure G(e), where the impulse response of the equiva- 
lent filter is plotted as a function of t . The variance for this se- 
quence is then [181: 

<oH2(N,TD,r)> = <(~l-~2+~3-...-YN)>2> 3 (18) 

where T is the dead time between measurements. 
transferRfunction of this filter is [20 3 : 

The square modulus of the 
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l-$&f) I2 = (si;;I’) 2 (saz;,“,‘,‘)2 . (19) 

It is illustrated in figure 6(f) for no dead time and N=lO . The charac- 
teristics of this variance, interesting for the topic of frequency stab- 
ility characterization are as follows: 

a) For the case of no dead time (TD =O), the transfer function of 
the equivalent filter has a main lobe, centered at fl=1/2r, and whose 
width is equal to: 

f 9 = 16 (equivalent rectangular filter) 

It may thus be made very narrow by increasing N. In this sense this 
filtering process is well suited for spectral analysis and this property 
has been exploited to obtain the spectral density of frequency fluctua- 
tions using time domain measurements 20 . 
lation (15) by realizing that 1 H(f) 1 L I 

This is easily seen from re- 
can be approximated by a narrow 

square window over which Sy(f) does not vary much. The spectral density 
is then given by: 

Sy(fl> =; <oH2 (N, T,T) > (20) 

This is seen to lend itself to a straightforward computation, in order to 
obtain an estimate of the spectral density without the use of a spectrum 
analyser. 

b) However, one should be aware of severe limitations in thistech- 
nique. 
nics of 

There exist secondary side lobes in HH(f) , which appear at harmo- 
f 

B 
=1/2r, for no dead time between measurements. These can be 

minimized .y proper adjustment of the dead time between measurements or 
by proper weighing of the samples of the measurements. The properties of 
the transfer function have been well studied in the case of a wei hing by 
the binomial coefficients and by a pseudo-sinusoidal function 
[zol l 

[18 ,[19], 

Modified sample variance 

Boileau and Picinbono have introduced a variance which can be in- 
terpreted in the case of its 
variance. /6) Their relations, 

digital realization as a modified sample 
when translated into the notation generally 

adopted in the field of frequency stability gives a variance as follows: 

where N is odd. Thus Y(;N+1)/2 is the central sample of the set of N 
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samples. Rutman has examined the case when N=3 and T=T [8] . The mea- 
surement sequence and the square modulus of the transfer function are 
shown in figure 6(g) and 6(h) respectively. The variance is given by: < CT2 mod(3,T,T)’ = (22) 

The modified sample variance has the advantage of being convergent for all 
five power law spectral densities examined up to now, plus two others, 
where cr=-3 and a=-4. However, it does not discriminate between white' 
phase noise and flicker phase noise better than a,(r) . 

A special case of the sample variance 

It is general practice to study the frequency stability or measure 
the variance as a function of averaging time r . This is what is done in 
the sample variance described above. In opposition to this practice, 
De Prins and Cornelissen [7] have studied frequency fluctuations over in- 
tervals T for fixed averaging times 'c . 
the variance u 2(T) of the 

One can then in principle study 

of the time in?&val T. 
instantaneous frequency (r-+0) as a function 

This variance is very different from the one 
described previously. In the present case all values of y(t) are scan- 
ned as T is varied in opposition to the averaging over r considered up 
to now. 

In the case where r does not tend to zero but is fixed at a given 
value, the variance then becomes a special case of the sample variance 
and the behaviour of u 

Y 
2(T) can be obtained from the bias function, BZ1. 

The high pass variance 

A close look at equation (15) suggests that a2(r) can actually be 
defined through the transfer function H(f) of the equivalent filter cor- 
responding to the measurement sequence. Rutman has suggested that this 
approach could be taken even if the actual measurement sequence was not 
existing [5]. Then, H(f) could be given the shape desired. Of course 
the inverse Fourier transform of H(f) is not necessarily a step wise 
function that could be implemented in a straightforward manner by a 
counting technique. Other measurement techniques have then to be imple- 
mented. 

In this approach the variance is written: 

02(T) = 1 O3 
I ?12v,02'c2 0 S?(f) 1 Jh$f) 1 2 df , (23) 

where SE(f) is the phase spectral density and is related to S (f) 
through relation (6). The variance is then defined in terms o 2 Hp(f) 
and not in terms of the measurement sequence. 
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From equation (23) one sees that for the Allan variance,.the square 
modulus of the phase transfer function of the equivalent filter is 

1 HVA(f) I2 = sin') R f T . (See figure (7)) 

This is essentially a high pass filter, having an oscillating nature with 
a period l/~. Low frequency components f< (rr)-l are filtered out, this 
being an essential character of the Allan variance. Consequently it ap- 
pears that ] Hq(f) I2 could be essentially a high pass filter and essen- 
tially the same character for the variance would be obtained. In fact, 
calculations show that, when a second order high pass filter, with cut 
off frequency f,= (ITT)'~ , is used to calculate a so called "high pass 
variance", the general behaviour with the power law spectral density is 
essentially the same as the behaviour of the Allan variance. Both vari- 
ances have the same asymptotic slopes with T and both variances cannot 
differentiate between white phase noise and flicker phase noise. 

Band pass variance 

Following this line of thought and recognizing the nature of the 
limitations of the high pass variance, 
bandpass filter be used for 1 H*(f) I2 

Rutman [8] has suggested that a 
with a center frequency equal to 

(1/2r) and a constant Q factor, say equal to 1. In that case the beha- 
viour of cs 

BP 
(T) is quite different from that of a,(r) or o (T) ; it 

shows camp ete discrimination between the five power law mode s in its !F 
asymptotic behaviour as a function of T . 

Of course, the method for measuring 
one incorporating a frequency counter. 

oBP ('c) is not a conventional 
One uses a phase comparator 

(loose-phase-lock technique), a bandpass filter and a r.m.s. voltmeter. 
In this sense, it is the same type of system as the one used in reference 
[17] and essentially falls in the class of systems used for studying fre- 
quency stability in the frequency domain. It appears natural to think 
of frequency stability measurements in the time domain as being done 
through a time sequential technique and a statistical analysis of the 
resulting data. This should be kept in mind in the practical implementa- 
tion of systems designed for the measurement of frequency stability in 
the time domain. 

An unified approach 

In the previous sections, various types of variance were examined. 
The approach taken has been one in which the measurement sequence was 
identified; the transfer function of the equivalent filter implementing 
the impulse response for the sequence in question was established, and 
the variances could be calculated through relation (15). This method is 
very useful in pointing out the limit of utilization of a particular va- 
riance in respect to the power law frequency model and also in understan- 
ding the reason of these limits. 
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These variances however have.all been introduced as particular 
"[""I'"[ fTr special needs. Recently, Lindsey, Chie, Leavitt and Lewis [21], 

22, 23 have introduced in the picture a method of analysis called the 
"structure function approach", which emphasizes the fundamental ties bet- 
ween these variances rather than their differences. 

The kth average frequency fluctuation over time r can be written 
as a difference of phase: 

(25) 

We may define the first difference or first increment in phase as: 

A(l) q(t k' '1 = \e(tk+') - ‘e(t,) . (26) 

The frequency difference (yk+l 
phase: 

-yk) appears as a second difference in 

@k+l -Yk> = l ,)&k+d 2lTvg T - 29(tk) + '4(tk- r)-J , (27) 

and the second phase increment is defined as: 

A(2) U(t k' '1 = v(tk+') - 2y(tk) + e(tk- r) . (28) 

It is readily realized that the first difference in phase is used in the 
definition of the true variance, while the second difference in phase is 
used in the definition of the Allan variance (two samples). Lesage and 
Audoin [20] h ave proposed to continue the process further and have obtai- 
ned an expression for the nth difference in phase, which includes the 
binomial coefficient as a weighing factor. This analysis has led them to 
the implementation of the Hadamard variance in which the measurement se- 
quence is weighed by the binomial coefficients. 

From this it appears that a common basis may be expected under the 
definition of the various variances. examined above. The rank of the phase 
increment appears to play a major role. In the approach of Lindsey and 
Chie this point is stressed. The Nth phase increment is defined as: 

AN V(f, r> = ; Wk (f1] q(t+ (N-k) T> , 
k=O 

where N! 
= k! (N-k) ! (Binomial Coefficient) . 

The structure function of phase is then defined as: 

(29) 

(30) 

dN) (T) = < (A(N)V(t, -c) ' . (31) 
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Stationnarity of the Nth difference is assumed in the wide sense. 
It is then shown that the variances defined earlier can all be expressed 
in terms of these structure functions: 

True variance ------------- 

12(r) = (2T \1', T)2 D;? (~1 ; (32) 

Allan variance -------------- 

Oy2(T) = 1 2(2lT v() T)2 D$T) ; (33) 

Modified three-sample variance -------------------------i---- 

2 (3,T,T)‘l 
1 

<oymod 9(2a vo T)2 Di3)(~) l , 

Hadamard variance (weighed by the binomial coefficients) ----------------- 

<a,&&N, T, ‘cl ’ = c2n;Tj2 D$%) ; 

(34) 

(35) 

This approach thus clearly shows that the variances utilized up to now by 
various authors have a common basis, in occurence, a structure function of 
phase. On the other hand, this structure function is related to the spec- 
tral density through the relation: 

D$,) = 22(N-1)(2*Vo T)2 I 
02 

s (0 sinZINx r fdf 

0 y (w ‘I f12 , (36) 

which effectively, as stressed earlier, provides means for evaluating the 
spectral density Sy(f) as filtered with a transfer function 

sinZN7rr f 2 2(N-l) 
Q(f) = m x9 (37) 

through sequential measurements in the time domain. 

In the previous paragraphs a structure function of phase was in- 
troduced as a means: for describing'frequency stability in the time-domain. 
A structure function of frequency, however, can also be introduced to 
describe frequency stability; it is written D (N)(r) . Lindsey and Chie 
[22] have shown, by studying the mathematical%ifferences between these 
structure functions, that the true variance is essentially a measure of 
phase instability while the Allan variance is a measure of frequency in- 
stability. This type of reasoning has led them to suggest that a func- 
tion of the product of the two types of variance could be a parameter by 
which frequency stability in the time domain could be characterized. 
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It should be pointed out that the characterization of the stabil- 
ity of an oscillator could in principle be made through tables of the 
structure functions D(N)(r) . The user could calculate from these tables 
the type of variance that is best suited for his particular application. 
In a sense, these structure functions can be thought of, as characterizing 
completely the frequency stability of the oscillator in the time domain 
in the same sense as Sy(f) , does it in the frequency domain. 

Long time frequency fluctuations 

In real oscillators it is possible to observe very long term fre- 
quency fluctuations, that is, very slow fluctuations which may appear over 
periods of days, months and years. These may originate either from slow 
random fluctuations or from deterministic drifts in the behaviour of the 
oscillator. 

Slow random fluctuations ------------------------ 

The above analysis was limited to five power laws of the spectral 
density (-2 cc1 <+2). Very slow frequency fluctuations predominate at 
very low frequencies and are thus represented by more negative slopepower 
laws such as a = -3 or -4. The greatest negative slope that the Allan 
variance can handle is a = -2, a random walk of frequency type of noise; 
for more negative slopes it diverges. Since direct spectral analysis of 
these slow fluctuations is not experimentally feasible, it appears that 
the other types of variance mentioned earlier may be useful. Ingfactthe 
modified three sample variance a2mod( ~,T,T 1 converges for f and 
f-4 types of noise with respect ve slope r2 9 and r3 . Consequently 
for very slow frequency fluctuations one may then have to use a variance 
different from the two sample variance in order to have meaningful1 in- 
terpretation of time domain data. 

Deterministic drifts -------------------- 

Systematic drifts are generally observed in oscillators. These 
drifts may be represented by a polynomial [9]. A modelfor frac' 
tional frequency drifts is: 

y(t) = dltl + d 2t2 + . . . dntn . 

For the first term, representing a linear frequency drift, the Allan va- 
riance varies as 'c 2 . It is time dependent for higher order drifts. The 
other variances mentioned above consequently are found very useful in 
characterizing these higher order polynomial drifts. In particular the 
modified three sample variance varies as r2 for quadratic frequency 
drifts while the Hadamard variance weighed by binomial coefficientsvaries 
as r 3 for cubic frequency drifts. The behaviour of the asymptotic value 
of o(r) versus r for various power laws of spectral density and various 
orders of frequency drifts are summarized in table 1. It should be under- 
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stood that the structure function approach can also be applied to analyze 
these long term frequency fluctuations, although emphasis has not been 
placed on this point in this paper. 

In this section we have examined the properties of several types 
of variances that can be used for characterizing frequency stability of 
oscillators in the time domain. Differences between these variances 
have been shown; their interrelation through the fractional frequency 
fluctuations spectral density has also been emphasized. In fact, it has 
been shown that these variances, in the case of random fluctuations, are 
essentially elegant means of representing the spectral density S (f) 
through parameters which can be measured with simple systems imp 37 emented 
with a frequency counter and a calculator for doing statistical analysis. 
Such systems will now be described. 

B - TIME DOMAIN MEASTJBEMENT SYSTEMS 

Ideally, frequency stability measurements require a frequency refe- 
rence much more stable than the oscillator to be studied. A system real- 
izing this condition can be implemented easily for the measurement of the 
frequency stability of most common oscillators. However, for stable, 
state-of-the art, oscillators, it is necessary that the reference oscil- 
lator be at least as stable as the oscillator studied. Frequency stab- 
ility measurements in the time domain can be done by two different methods 
which are related to the detection of two different parameters: frequency 
and phase. 

One can determine the mean frequency over finite observation times 
and calculate, for a given number of samples, a certain variance as des- 
cribed in the previous section. Although these measurements involve the 
well developed technology of frequency or period counting, their use is 
limited by the fact that they give information only on the mean frequency 
and the frequency fluctuations. Furthermore, in many systems, the mea- 
surement samples are not adjacent in time which, in some cases, alter the 
value of the statistical parameter calculated. 

Many experimental set up's have been considered during the last 
y;yr;;dYy;y I as the technology evolved (see for example reference [24], 

We shall limit our discussion to a few of them illustra- 
ting their main principles. 

The most simple set up is the "Direct Frequency Counting System" 
shown in figure 8. In this case the reference oscillator is the frequency 
counter time base. It is suitable for the study of low performance oscil- 
lators. The output of the counter gives the mean frequency over a prese- 
lected time interval. Its recording on a trip chart, magnetic tape or in 
a digital memory allows one to use best estimate curve fitting methods, 
in order to find any systematic frequency trends or drifts. Thesedrifts 
are removed prior to statistical analysis. The two sample variance (Allan 
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variance) or any other desired variances are calculated from the set of 
corrected data. The main limitation of this set up is the 5 one count 
and the accuracy of the time base reference. 

The "Frequency Heterodyne Technique", shown in figure 9, is another 
important set up used when the oscillator to be studied is more stable 
than the frequency counter time base. One must use another oscillator as 
the reference. First, the oscillator frequency is translated down to a 
value which can be conveniently measured by the counter. The translation 
is realized by mixing the oscillator signal with the reference signal set 
at a convenient different frequency and by detecting only the difference 
frequency (beat frequency). A synthesizer can be very helpful in many 
cases. The optional link between the reference and the counter allows an 
increase in the counter performance and a precise measurement of the ab- 
solute frequency. Statistical analysis is done on the beat frequency as 
described for the former set up. One must refer the fluctuations to the 
nominal frequency of the oscillator. 

If the oscillator and the reference frequencies are very close, 
one may multiply each one by a different factor, creating a more sizeable 
beat frequency. Such a system is shown in figure 10. Frequency counting 
and statistical analysis are achieved as in the previous set up. Unfor- 
tunately, noise may be introduced in the multiplier chains which set li- 
mits to this technique. 

Measurements of stability in the frequency domain require the de- 
tection of phase or frequency fluctuations. While equipped to do so, 
the same set up can be used to do measurements in the time domain. These 
experimental systems are called "Phase Locked Reference Systems". A 
voltage controllable reference oscillator is phase-locked to the oscilla- 
tor signal. When loosely locked, as indicated in figure 11, the phase 
detector delivers a signal which is proportional to the phase difference 
between the two oscillators. If the reference is considered more stable 
than the oscillator, the fluctuations of this signal is attributed to 
the random changes of the oscillator phase. When this signal is proces- 
sed through a differentiator, a low frequency signal, proportional to the 
frequency fluctuations, is obtained. It is then possible to use a volt- 
age to frequency converter driven by this signal, to generate a low fre- 
quency oscillation, fluctuating in the same manner as the frequency of 
the original oscillator. Average frequencies, over time intervals T , 
are determined by a counter and statistical analysis is performed as in 
the previous systems. 

If the reference oscillator is tightly locked in phase to the 
oscillator studied, as shown in figure 12, the command signal, applied 
to the reference is proportional to the frequency changes between the 
two oscillators. Again if the reference oscillator is much more stable 
than the other oscillator, this command signal fluctuates in the same 
way as does the frequency of the oscillator. Statistical analysis of 
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this signal is performed with the set up described in the loose phase 
locked reference case. 

The two systems act simply as frequency translators with non unity 
conversion factor. The sensitivity of these systems is enhanced by a 
factor proportional to the ratio of the nominal oscillator frequency to 
the nominal frequency of the converter. Time domain regions, where the 
results are significant, are determined by the servo loop characteristics. 
Usually a second order loop is used in order to achieve optimum perfor- 
mance; the parameters to adjust are the natural frequency and the damping 
factor [27],[28],[29]. The loose Phase Locked Reference System is nor- 
mally used when frequency stability for averaging times below 1 set is 
needed, while the tight Phase Locked Reference System is preferred for 
longer averaging times. 

Obviously these systems are well suited for the measurement ofphase 
or frequency fluctuations in the frequency domain. For this type of mea- 
surement, it is necessary to measure the spectral density at the phase 
detector in the first system or the spectral density of the command signal 
in the second system. Since for highly stable oscillators the information 
lies in a spectrum containing frequencies much lower than one hertz, a 
very low frequency spectrum analyser is required. Digital real time spec- 
trum analysers are indicated for such measurement but they are expensive. 
The method of bandpass filtering proposed by Rutman can be applied togive 
measurements either in the time domain or in the frequency domain with 
these systems [5] . 

All the experimental systems described previously deal with the 
measurement of frequencies or periods averaged over a finite observation 
time, 'f. Characterization of frequency stability is done through statis- 
tical analysis on an ensemble of these averaged frequencies. It was 
pointed out in the theoretical section that the frequency stability of 
an oscillator can also be characterized by a measurement of phase diffe- 
rences. To do so, one has to measure the phase of an oscillator and to 
calculate phase differences, spaced in time by an interval, T . Measure- 
ment techniques of phase are well developed in the field of time scale 
implementation since a time scale can be graduated in terms of phase 
with 2~ radians as a unit of time (one period). Thus, measurements of 
phase differences correspond to time difference measurements. 

We will describe two systems for measuring frequency stability by 
time differences. They are the Dual Mixer Time Difference System [30] 
and the Phase Modulated Phasemeter [31]. Both systems give about the 
performance of ?l picosecond time interval resolution and a limit of 
resolution of roughly 1x10-l3 r-l when used to measure fractional fre- 
quency stability. Since these systems measure the phase of oscillators, 
the evaluation of the two-sample variance can be done without dead time 
and no correction factors are needed. Furthermore the systems can be used 
to compare oscillators of exactly the same nominal frequency (clockoscil- 
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lators). 

The Dual Mixer Time Difference System is illustrated in figure 13. 
The two oscillators are of the same type and have the same nominal fre- 
quency, vo. A common oscillator translates down to vb each OSCilhtOr 

frequency in two identical channels. Phase comparison is done between 
the two beat signals. Zero crossing detection on each signal is achieved 
and serves to trigger pulse generators. The time interval between each 
pair of pulses is a measure of the relative phase of the two oscillators; 
the system acts as a sophisticated phase detector. Any fluctuations of 
this time interval can be considered as fluctuations of the phase of one 
or both oscillators. A time interval counter measures these phase (time) 
differences and statistical analysis is done according to prescribed theo- 
retical calculations. 

The translation has the effect of increasing the system resolution 
by a factor which is approximately vo/vb . When used to characterize the 
frequency stability in the time domain, the sampling time is the period 
or a multiple integer of the beat signal. Consequently a synthesizer 
used as common oscillator becomes a very convenient tool. Noise contri- 
bution from the common oscillator is greatly reduced when the nominal 
phase shift between the two beat signals is small. An adjustable phase 
shifter is then placed in series with one oscillator in order to satisfy 
this condition. (See the Appendix for a calculation on that system.) 

The Phase Modulated Phasemeter System is illustrated in figure 14. 
Again two identical oscillators are compared in phase. Each signal fre- 
quency is multiplied, then mixed and filtered to get a beat signal. A 
non zero frequency beat is generated by modulating the phase of one oscil- 
lator with a low frequency signal. Zero crossing detection of this signal 
gives pulses which can be located in time when compared to a reference 
signal triggered by the modulating signal. This time interval is a mea- 
surement of the phase of one oscillator compared to the other. If one 
oscillator is considered as a reference, the time interval will be a mea- 
surement of the phase of the other oscillator. As in the case of the 
Dual Mixer Time Difference System, the frequency stability is calculated 
from this time interval recording for different observation times by 
simple phase differences and statistical weighing. With this system, the 
measurement resolution is increased by the up conversion factor. 

The various measurement systems described show a certain hierarchy 
in the parameters evaluated. When one has access to a signal proportional 
to the phase, he is allowed to calculate any combination of phase diffe- 
rences, then, any variances. In fact, it is possible to calculate all the 
structure functions of the phase fluctuations which gives a complete mea- 
surement of the frequency stability in the time domain. This is possible 
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with the two last systems and the loose Phase Locked Reference System 
when the phase is recorded instead of being differentiated. All theother 
systems described give access only to frequency and its fluctuations, and 
this limits the amount of statistical information which can be obtained. 
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APPENDIX: EXPRESSION OF THE FREQUENCY STABILITY IN THE TIME 

DOMAIN FOR THE DUAL MIXER TIME DIFFERENCE SYSTEM 

The phases at the output of oscillator 1 and oscillator 2 are : 

y(t) = ult + 0 l + q(t) , 

and "2w = W2t + e2 + kJ2w , 

where 
9 

and w2 
are the angular frequencies, % and 8 2 are the 

initial phase offsets and (Vi(t) and q2(t) are the phase fluctuations. 

The phase at the output of the common oscillator is : 

‘#) = wRt + eR + qR(t> 

with the corresponding meaning for each parameter or variable. 

At the input of each mixer, the phase of the oscillator signals 

can be represented by the equations already given where 0 includes the 

phase shift added by the variable shifter and u,(t) and q,(t) include 

any phase fluctuations added by the transmission links. The phase of each 

reference signal can be written as : 

@R,l(t) = wRt + 'R,l 
+ k-,,,(t) 

~~ , ,(t> = wRt + OR 2 + t.R,2(t) , 

in order to account for any phase shifts and phase fluctuations introduced 

by the isolation amplifiers and the transmission links. We will see below 

how these phase perturbations can be made negligeable in the measurement 

system. 
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The output of each mixer delivers low frequency beats whose phase 

are : 

@ B,l(t) = CUR- y)t + @R,l - ell + vR,l(t> - Yp 

a B,2w = @JR- w2h + @,,, - (3,) + ‘t’R,2(t) - $W 

These two signals have a time evolution represented as follow : 

The positive zero crossings give time events that are a measurement 

of the relative phase between the two oscillators. 

Ata certain time, tl i, the phase of the first beat signal is such 
, 

that the signal is zero; then 

(0 R --w >t 1 1,i + 'R,l - '1 + OR 1 
, (t 1 i) - - ~l(tl,i )=m21~ 

, 

At a certain time t2 i, the phase of the second beat signal corresponds 
, 

to the same criterion : 
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(fJJ R-u2)t2 
, 
i + OR 2 - e2 + qR *(t2 i> - V2(t2 i) = b+nUT 

, , , , 

where m and n are integers. 

Now if we impose that: w2 - w1 and define w B R = w -w2 = wR-~1 , we 

obtain the identities 

WBt2,i +e R 2 - e2 + qR 2(t2 i) - kJ2(t2 i> = b+d 27~ 
, 9 9 , 

WBtl,i + 'R , l- '1 + 'iR lctl , 

and by subtraction : 

WB(t2 i- t , 1 i) + eR 2-eR 1-e2+e1 +vR 2ct2 i) -qR pl i) 
, , , , , , , 

- p2(t2,i) - vpl,i) = n2lT 

In this expression, OR 2 and OR 1 are constants different by a value 
, , 

introduced by the isolation amplifiers and cable lengths. It is possible 

to define a constant phase offset, 

A8 = eR 2 - eR 1 - e2 + e1 
, , 

which can be adjusted by the phase shifter. By doing so, we also set the 

nominal value of '2,imtl,i ; for small time offsets, the two phase fluc- 

tuation terms coming from the reference oscillator are correlated and their 

difference is negligeable when compared to the phase fluctuation difference 

of the two oscillators. Within this approximation, the time difference 

becomes : 

Ati = t2 i-tl i = 
p2(t2 i) - qtl i) 

, , Ae n2x --++ 
, , WB WB WB 

I 
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If we look at the next pair of zero crossings we obtain, in a 

similar way, the time difference : 

At t2,i+l - tl,i+l = 
~2(t2 i+l) -~l(tl i) Ae n2V 

i+l = 
, , --+- 

WB WB OB 

and for the following pair 

'c;' (t 

At 
A0 n2x 

i+2 = t2,i+2 - tl,i+2 = 
2 2,i+2)-V/lCtl,i+2) --+- 

WB WB WB 

The definition of the two sample variance in term of the second 

difference of phase is : 

02(T) = 3 I Iptti+2 > - 24(t i+l) +eti) 2 

2lTVOT 1 

where the averaging time, T, is the time interval between t i and t i+l 

or the time interval between two successive phase measurements of each 

oscillator. Such a linear combination of phase fluctuations can be 

obtained by grouping the time differences just derived. Then 

At - 2Ati+l + At. = 
L42(t2 i+2) - 2~2(t2 i+l) + e2(t2 i) 

, , , 
i+2 1 WB 

Y?lctl,i+2) - 2el(tl,i+l) + (41(tl,i) 
WB 

If the two oscillators are statistically independent, we can write : 

Q2ct2 i+2) - 2Y;(t2 ;+q22(t2 i> 

' 1 

2 
(At i+2 ; 2Ati+l + Ati12 = 

i+l 

WB 

+ 
I 
4(tl i+2) - 2Y)l(tl i+l> +Y;(tl i) 2 

WB ' 1 

and in terms of the two sample variance of each oscillator : 
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This relation is the corner stone of the Dual Mixer Time Difference System. 

It shows that a linear combination of the time interval measurements give 

a value proportional to the two sample variance of each oscillator. When 

the two oscillators are identical, (J:(T) = a:(~) , and the calculated value 

is twice the value for each oscillator. If one oscillator is much more 

stable than the other oscillator, u:(r) << o;(r) , the calculated value is 

directly the value for the instable oscillator. In these calculations, we 

consider three successive pairs of time event; they are then spaced in time 

by an interval: f = (v&-l , the beat period. It is also possible to skip 

a determined number of zero crossings between each pair of time events. In 

this case, the observation time is a multiple integer of (v,) -1 . 

A similar type of calculations applies to the phase modulated phase- 

meter.. 
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OSCILLATOR 
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OSCILLATOR 
2 

TIME BASE 

I RECORDER 
I 

I STATISTICAL 
ANALYSIS 

Figure 1. Block diagram of the ideal experimental set up used to measure the frequency 
of oscillator (1) over an averaging time 7. The frequency of oscillator (2) is 
assumed to be free of fluctuations. 
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Figure 5. Plot of the square root of the sample variance r~* (N, T, 7) (standard deviation) obtained for 

the hypothetical results of figure 4, as a function of the averaging time. 
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Figure 8. Block diagram illustrating the Direct Frequency Counting method. 
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PHASE LOCKED REFERENCE (Loose) 
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Figure 11. Block diagram illustrating the Phase Locked Reference System. In this system the reference oscillator 
is loosely locked. 
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Figure 12. Block diagram illustrating the Phase Locked Reference oscillator in the 
tightly locked mode. 
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DUAL MIXER TIME DIFFERENCE 
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Figure 13. Block diagram illustrating the Dual Mixer Time Difference System. When the two 
oscillators have tendency to move off frequency they must be phase locked 
loosely together. This loop is not shown on this figure. 
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PHASE MODULATED PHASEMETER 
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Figure 14. Block diagram illustrating the Phase Modulated Phasemeter System. 
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Table 1 

Asymptotic Behaviour of Various Variances for Power Law 
Spectral Models and Polynomial Drifts 

Zk) sy Cf) 

h, f 
2 

h, f 

h 0 

h-, f Oi 

h-2 f O2 

h-3 f O3 

1 h, fo4 

7 -2 7 -2 

-7 -2 -7 -2 

7 -2 7 -2 7 -2 

7 0 7 0 

7 
I 7 1 

7 2 

7 3 

40 = d,fH 
rl 

I dn * 
n 

7 4 
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QUESTIONS AND ANSWERS 

DR. GERNOT M. R. WINKLER, U. S. Naval Observatory: 

I have nothing to criticize. 
tion. 

I think it was a very clear explana- 
However, I think there is still a problem if.you want to in- 

troduce a generally educated person to the subject because of the 
terminology, which was, of course, adopted a long time ago; it is 
misleading. And I would like to suggest an additional approach to 
such a generally educated person. 

There are two ways, two main distinctions, in which we can 
measure and/or characterize frequency instability. The first one, 
called time domain measurement, essentially measures and/or charac- 
terizes the instabilities by measuring phase differences. And we 
obtain a statistical distribution of the carrier frequency, and we 
characterize that statistical distribution of the carrier frequency. 

In the frequency domain, we interpret the variations and meas- 
ure them as variations of the modulation frequency or of a modula- 
tion frequency around a fixed carrier. 

main, 
Now, I think that this is the first thing. Now in the time do- 

there are again two essentially different methods to do it. 
One is to obtain samples of the time readings which are equally 
spaced, and then you look at the statistics and have various ways to 
characterize it. 

The other way essentially is counting phase differences between 
zero crossings, and you obtain your desired statistics this way. 
Now by doing that you inevitably have the question of whether you 
have dead time or not dead time. And you have the various variations 
of your methods. 

But I believe the essential point which we tried to get across 
is that the distinction of time domain or frequency domain is not in 
frequency, but it is the distinction of frequency measurements of a 
carrier or frequency measurements of a modulation frequency around a 
fixed carrier. 

In both cases, we really measure frequency. But they mean two 
different things. Thank you. 

DR. HARRY PETERS, Sigma Tau: 

I also thought that was one of the best summaries that I have ever 
heard on the subject. If you will allow me, I would like to make 
one comment regarding the use of such systems. 

In the use of any of these systems, you need a frequency ref- 
erance. And preferably the reference should be much better than the 
things you wish to measure. If you wish to measure a crystal in a 
rubidium in 1 to 100 seconds averaging time, of course you have no 
standard which is significantly better. And for such systems, the 
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use of a cesium as a reference in all of these systems is particu- 
larly inappropriate because you need a subsidiary standard as sort 
of a flywheel for all measuring times out to on the order of a thou- 
sand seconds. And this is why many people want hydrogen masers in 
their systems. For any of these systems, you would like a standard 
which is superior to all the other standards for all the measuring 
times in which you are interested. I had many other extensions of 
these comments, but I think I will stop here. Thank you. 

MR. DAVE ALLAN, National Bureau of Standards: 

Let me clarify one thing the novice to the community. I think they 
have done an outstanding job in showing how you can characterize an 
oscillator as to the random fluctuations basically. One must be 
very careful; to really characterize an oscillator, there are all 
kinds of systematic effects that must be included as far as the 
manufacturer and the user are concerned. The dependence upon 
temperature, pressure, humidity, whatever you have, that the oscil- 
lator may depend upon, is a whole set that must be included in a 
proper characterization of an oscillator. 

. 

291 


	Cover Page
	Abstract
	Introduction
	Theory
	Definitions
	Measuring Time Domain Frequency Stability
	Two Sample Variance
	Relation Between Time Domain & Frequency Domain
	Hadamard Variance
	Modified Sample Variance
	Special Case of Sample Variance
	High Pass Variance
	Band Pass Variance
	A Unified Approach
	Long Time Frequency Fluctuations
	Slow Random Fluctuations
	Deterministic Drifts

	Time Domain Measurement Systems
	Appendix
	References
	Figures
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Fig. 14

	Tables
	Table 1

	Questions & Answers

